The correct option is
B π4Let I=∫∞0xdx(1+x)(x2+1)
By partial fraction,
x(1+x)(x2+1)=A(1+x)+Bx+C(x2+1)
⇒x=A(x2+1)+(1+x)(Bx+C)
⇒x=A(x2+1)+(Bx+Bx2+C+Cx)
⇒x=(A+B)x2+(B+C)x+(A+C)
On comparing both sides, we get
A+B=0,B+C=1,A+C=0 ..... (i)
On adding all these equations, we get
A+B+C=12 ...... (ii)∴A=12−1=−12,C=12
and B=12
∴I=∫∞0{−12(1+x)+12(x+1)2(x2+1)}dx
=−12∫∞0dx1+x+12∫∞0xx2+1dx+12∫∞0dx1+x2
=−12[log(1+x)]∞0+14[log(x2+1)]∞0+12×π2
=−12limx→∞log(1+x)+14limx→∞log(1+x2)+π4
=limx→∞log[(1+x2)1/4(1+x)1/2]+π4
=limx→∞log⎡⎢
⎢
⎢
⎢
⎢⎣√x(1x2+1)1/4√x(1x+1)1/2⎤⎥
⎥
⎥
⎥
⎥⎦+π4
=log(0+1)1/4(0+1)1/2+π4
=log(1)+π4=0+π4=π4