wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 0x(1+x)(x2+1)dx is

A
2π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π4
Let
I=0xdx(1+x)(x2+1)
By partial fraction,
x(1+x)(x2+1)=A(1+x)+Bx+C(x2+1)
x=A(x2+1)+(1+x)(Bx+C)
x=A(x2+1)+(Bx+Bx2+C+Cx)
x=(A+B)x2+(B+C)x+(A+C)

On comparing both sides, we get
A+B=0,B+C=1,A+C=0 ..... (i)

On adding all these equations, we get
A+B+C=12 ...... (ii)A=121=12,C=12
and B=12

I=0{12(1+x)+12(x+1)2(x2+1)}dx

=120dx1+x+120xx2+1dx+120dx1+x2

=12[log(1+x)]0+14[log(x2+1)]0+12×π2

=12limxlog(1+x)+14limxlog(1+x2)+π4

=limxlog[(1+x2)1/4(1+x)1/2]+π4

=limxlog⎢ ⎢ ⎢ ⎢ ⎢x(1x2+1)1/4x(1x+1)1/2⎥ ⎥ ⎥ ⎥ ⎥+π4

=log(0+1)1/4(0+1)1/2+π4

=log(1)+π4=0+π4=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon