The value of ∫sin7xcosxdx is
(where C is constant of integration)
A
−cos6x3+2cos4x3−cos2x+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−cos6x3+cos4x2−cos2x+ln|cosx|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−sin6x3+2sin3x3−sin2x+ln|sinx|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−sin6x3+2sin4x−sin2x+sinx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−cos6x3+cos4x2−cos2x+ln|cosx|+C Let I=∫sin7xcosxdx=∫(sin7x+sin5x)−(sin5x+sin3x)+(sin3x+sinx)−sinxcosxdx=∫2(sin6x−sin4x+sin2x)cosx−sinxcosxdx=∫[2(sin6x−sin4x+sin2x)−tanx]dx=2[−cos6x6+cos4x4−cos2x2]−ln|secx|+C=−cos6x3+cos4x2−cos2x+ln|cosx|+C