The correct option is B 23
I=∞∫01(x+√1+x2)2dx
Let x=tanθ⇒dx=sec2θ dθ
I=π/2∫0sec2θ(tanθ+secθ)2 dθ
=π/2∫0sec2θ(secθ−tanθ)2 dθ
Let secθ−tanθ=t
⇒secθ(tanθ−secθ)dθ=dt
I=0∫112(t+1t)t(−dt)
=1∫012(t2+1)dt
=12[t33+t]10
=23
ALTERNATE SOLUTION:
1x+√1+x2=√1+x2−x
Let √1+x2−x=t
⇒√1+x2=x+t
Squaring both sides
1+x2=x2+2xt+t2⇒x=12t−t2=1−t22tdx=(−12t2−12)dt=−(1+t22t2)dt
When x=0⇒t=1x=∞⇒t=0
∴I=1−t20∫1−(1+t22t2)(1−t22t+1−t22t+t)dt
I=1−t21∫0(1+t22t2)1t2dt
I=121∫0(1+t2)dt
=12[t+t33]10
=23