The correct option is B 0
Let I=∫π2−π2sin(log√x2+1+x)dx (1)
Using property I=∫π2−π2sin(log√x2+1+x)dx
We get
I=∫π2−π2sin(log√(−x)2+1−x)dx=∫π2−π2sin⎛⎜
⎜⎝log⎛⎜
⎜⎝1√(x)2+1+x⎞⎟
⎟⎠⎞⎟
⎟⎠dx
=∫π2−π2sin(log(√(x)2+1+x)−1)dx
=−∫π2−π2sin(log(√(x)2+1+x))dx ...(2)
Adding (1) and (2), we get
2I=0⇒I=0