=100∑r=1∫rπ(r−1)π|sinx|dx+∫100π+v100π|sinx|dx Now for ∫rπ(r−1)π|sinx|dx Let x=(r−1)π+t ⇒sinx=sin[(r−1)π+t]=(−1)r−1sint When x=(r−1)π,t=0 and when x=rπ,t=π ∴∫rπ(r−1)π|sinx|dx=∫π0∣∣(−1)r−1limt∣∣dt
=∫π0|sinx|dt=∫π0sintdt
=[−cost]π0=−cosπ+cos0=2 Again for ∫100π+v100π|sinx|dx Put x=100π+t ∫100π+v100π|sinx|dx=∫u0(−1)nsintdt=∫v0sintdt