wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of (100π+v0|sinx|dx)+cosV is (0Vπ).

Open in App
Solution

100π+v0|sinx|dx=π0|sinx|dx+2ππ|sinx|dx+...+100π99π|sinx|dx+100π+v100π|sinx|dx
=100r=1rπ(r1)π|sinx|dx+100π+v100π|sinx|dx
Now for rπ(r1)π|sinx|dx
Let x=(r1)π+t
sinx=sin[(r1)π+t]=(1)r1sint
When x=(r1)π,t=0 and when x=rπ,t=π
rπ(r1)π|sinx|dx=π0(1)r1limtdt
=π0|sinx|dt=π0sintdt
=[cost]π0=cosπ+cos0=2
Again for 100π+v100π|sinx|dx
Put x=100π+t
100π+v100π|sinx|dx=u0(1)nsintdt=v0sintdt
100π+v0|sinx|dx=100r=1rπ(r,1)π|sinx|dx+100π+v100π|sinx|dx
=100r=12+100π+v100π|sinx|dx=201cosv

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon