No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinxx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
xsinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsinxx Let y=cosx2cosx22...cosx2n =12sinx/2n(cosx2cosx22...cosx2n−2sinx2n−2) ⋮ =12sinx/2nsinx Hence limn→∞2sinx/2nsin2sinx/2nsinxx=1.sinxx=sinxx