The value of limn→∞n∑r=11n√n+rn−r is
limn→∞n∑r=11n√n+rn−r
Converting limit into integral, we get
limn→∞n∑r=11n
⎷1+rn1−rn=∫10√1+x1−xdx
x=cosθ→dx=−sinθ dθ
∫0π2cosθ2sinθ2(−sinθ) dθ
=∫π20(1−1+2cos2θ2)dθ
=∫π20(2cos2θ2−1)dθ+∫π20dθ
=∫π20cosθdθ+π2
=1+π2
Hence, option D.