The value of limx→π/62sin2x+sinx−12sin2x−3sinx−1 is
L=limx→π/62sin2x+sinx−12sin2x−3sinx−1L=2sin2(π6)+sin(π6)−12sin2(π6)−3sin(π6)−1L=2.14+12−12.14−3.12−1=0−2=0
So option D is correct