The correct option is A 2sin2θ−1θ
∑∞n=1tan(θ2n)2n−1cosθ2n−1tan(θ2n)2n−1⋅cosθ2n−1=sinθ2n2n−1cosθ2n⋅cosθ2n−1=2sin2θ2n2n−1sinθ2n−1⋅cosθ2n−1=1−cosθ2n−12n−2⋅sinθ2n−2=12n−2{1sinθ2n−2−cosθ2n−22sinθ2n−1⋅cosθ2n−1}=12n−2{1sinθ2n−2−12sinθ2n−1}Now,∑∞n=1(12n−2⋅sinθ2n−2−12n−1⋅sinθ2n−1)=limn→∞{12r−2⋅sinθ2r−2−12r−1⋅sinθ2r−1}=limn→∞{12−1⋅sin2θ−1sinθ+1sinθ−12sinθ2+12sinθ2−14sinθ4}=limn→∞{2sin2θ−12n−1sinθ2n−1}=(2sin2θ−1θ)Hence,optionAiscorrectanswer.