The value of ∞∑n=1(tan−1(nn+2)−tan−1(n−1n+1)) is equal to
A
π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ4 Tn=tan−1(n+1−1)(n+1)+1−tan−1(n−1)n⋅1+1Tn=[(tan−1(n+1)−tan−1(1))−(tan−1n−tan−1(1))]Tn=tan−1(n+1)−tan−1nT1=tan−1(2)−tan−1(1)T2=tan−1(3)−tan−1(2)T3=tan−1(4)−tan−1(3)Tn=tan−1(n+1)−tan−1nSn=tan−1(n+1)−tan−1(1)limn→∞Sn=tan−1(∞)−tan−1(1)=π2−π4=π4