The value of elog10tan1∘+log10tan2∘+log10tan3∘+.......+log10tan89∘is
0
e
13
None of these
Explanation for the correct option:
Find the required value.
Given: elog10tan1∘+log10tan2∘+log10tan3∘+.......+log10tan89∘
Let,
E=elog10tan1∘+log10tan2∘+log10tan3∘+.......+log10tan89∘
=elog10tan1∘+log10tan2∘+log10tan3∘+.....+log10tan45∘+log10cot(90∘−46∘)+log10cot(90∘−47∘)+......+log10cot(90∘−89∘)∵tanθ=cot(90∘−θ)=elog10tan1∘+log10tan2∘+log10tan3∘+.....+log10tan45∘+log10cot44∘+log10cot43∘+......+log10cot1∘=e(log10tan1∘+log10cot1∘)+(log10tan2∘+log10cot2∘)+(log10tan3∘+log10cot3∘)+........+(log10tan44∘+log10cot44∘)+log10tan45∘=e(log10tan1∘×cot1∘)+(log10tan2∘×cot2∘)+(log10tan3∘×cot3∘)+........+(log10tan44∘×cot44∘)+log10tan45∘∵logam+logan=logam×n=elog101+log101+log101+........+log101∵tanθcotθ=1,tan45∘=1=e0+0+0+.....+0∵log101=0=e0=1Hence, option (D) is the correct answer.