The value ofi–i2+i3–i4+…–i100 equal is
i
-i
0
1+i
The explanation for the correct answer.
Solve for the value of given series.
The given series i–i2+i3–i4+…–i100
Here, the first term a=i
Common ratio, r=-i
Sum of n terms of GP
=a×(1-rn)(1-r)
=i×(1-(-i)100)(1+i)=i×(1-(-1)100(i)100)(1+i)=i×0=0
Hence, option C is correct .
Find the values of the following expressions :
(i) i49+i68+i89+i110(ii) i30+i80+i120(iii) i+i2+i3+i4(iv) i5+i10+i15(v) i592+i590+i588+i586+i584i582+i580+i578+i576+i574(vi) 1+i2+i4+i6+i8+...+i20
The value of i + i2 + i3 + i4 is __