The value of ∫161tan−1 √√x−1 dx is
16π3+2√3
43π−2√3
43π+2√3
163π−2√3
Integrating by parts, the given integral is equal to x tan−1 √√x−1∣∣161−∫161x√x14√x√√x−1dx =163π−14∫161dx√√x−1 =163π−14∫√304t(1+t2)t dt(√x=1+t2) 163π−(√3+√3)=163π−2√3
The value of cos−1(cos3π2) is
(a) π2 (b) 3π2 (c) 5π2 (d) 7π2