I=∫π2−π2(x3+xcosx+tan8x+1)dx
=⎡⎢
⎢⎣∫π2−π2x3+∫π2−π2xcosx+∫π2−π2tan5x+∫π2−π21.⎤⎥
⎥⎦
Let I1=∫π2−π2x3=[x44]π/2−π/2=0
I2=∫π2−π2xcosx
By Integration by parts method
=x∫cosdx−∫1.∫cosx dx.dx
=xsinx−∫sinx dx
=[xsinx+cosx]π/2−π/2=π2(1)+0−π2(−1)
I3=∫π/2−π/2tan5x dx=∫π/2−π/2tan3x.tan2xdx
=∫π/2−π/2tan3x(sec2x−1)dx=∫π/2−π/2tan3xsec2x dx−∫π/2−π/2tan3x dx
=∫π/2−π/2tan3xsec3x dx−∫π/2−π/2tanx.tan2x dx
=∫π/2−π/2tan3xsec2x dx−∫π/2−π/2∫π/2−π/2tanx.(sec2x−1)dx
=∫π/2−π/2tan3xsinx dx−∫π/2−π/2tanxsec2x dx+∫π/2−π/2tanx dx
Let tanx=t∴ dt=sec2x dx
=∫t3 dt−∫t dt+ln|secx|
=[tan4x4−tan2x2+ln|secx|]π/2−π/2
=0
I4=∫π/2−π/21.dx=[x]π/2−π/2=π
I=I1+I2+I3+I4
=0+π+0+π
=2π