The value of integral ∫π0x2sinx(2x−π)(1+cos2x)dx is equal to
A
π24
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π26
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cπ24 Let I=∫π0x2sinx(2x−π)(1+cos2x)dx=∫π0(π−x)2sin(π−x)(2π−2x−π)(1+cos2(π−x))dx =∫π0(π2−2πx+x2)sinx(π−2x)(1+cos2x)dx=∫π0(π2−2πx)sinx(π−2x)(1+cos2x)dx−I ⇒2I=π∫π0sinx1+cos2xdx=−π∫−11dt1+t2 [putting cosx=t⇒sinxdx=−dt] =π[tan−1t]1−1=π(π4+π4)=π22 ∴I=π24