The correct option is B 2√x2−4x+5+8ln|(x−2)+√x2−4x+5|+C
Let I=∫2x+4√x2−4x+5dx
Now,
2x+4=λddx(x2−4x+5)+μ=λ(2x−4)+μ
Equating the coefficients of same degree on both sides, we get
λ=1,μ=8⇒I=∫(2x−4)+8√x2−4x+5dx =∫(2x−4)√x2−4x+5dx+8∫dx√(x−2)2+1 =2√x2−4x+5+8ln|(x−2)+√x2−4x+5|+C