The value of k, for which (cos x+sin x)2+k sin x cos x−1=0 is an identity, is
-1
-2
0
1
Given, (cos x+sin x)2+k sin x cos x−1=0, ∀ x⇒ cos2 x+sin2 x+2 cos x sin x+k sin x cos x−1=0, ∀ x⇒ (k+2)cos x sin x =0, ∀ x ⇒k+2=0⇒k=−2
The value of p−1⋅q⋅q−1⋅r⋅r−1⋅p is(a) –1(b) 0(c) 1(d) 2
The value of is
A. 1
B. 0
C. − 1
D.