The correct option is D x2
L=limn→∞[x]+[2x]+...+[nx]n2nx−1<[nx]≤nx
Putting n=1,2,3,..,n and adding them
x∑n−n<∑[nx]≤x∑n⇒x∑nn2−1n<∑[nx]n2≤x∑nn2
limn→∞(x∑nn2−1n)=limn→∞(nx(n+1)2n2−1n) =x×12=x2
limn→∞(x∑nn2)=xlimn→∞n(n+1)2n2=x2
Therefore, using Sandwich theorem, we have,
limn→∞1n2n∑r=1[rx]=x2