The correct option is A −13
limx→∞x2ln(xcot−1x)
Assuming y=1x, we get
limx→∞x2ln(xcot−1x)=limy→01y2ln(1ycot−11y)=limy→0ln(1ytan−1y)y2=limy→0ln(tan−1yy)y2=limy→0ln(tan−1y)−lnyy2
Using L'Hospital's Rule, we get
=limy→01(1+y2)(tan−1y)−1y2y=limy→0y−(1+y2)(tan−1y)2y3(1+y2)(tan−1y)y=limy→0y−(1+y2)(tan−1y)2y3
Using L'Hospital's Rule, we get
=limy→01−1−2ytan−1y6y2=limy→0−tan−1y3y=−13