1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Pascal Triangle
The value of ...
Question
The value of
lim
n
→
∞
1
p
+
2
p
.
.
.
.
.
.
.
.
.
.
+
n
p
n
p
+
1
is
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
p
+
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
p
+
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
p
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
1
p
+
1
lim
n
→
∞
1
p
+
2
p
+
.
.
.
+
n
p
n
p
+
1
lim
n
→
∞
n
∑
n
p
+
1
t
p
n
p
+
1
=
lim
n
→
∞
t
=
1
∑
n
t
b
n
p
1
n
lim
∞
→
n
t
=
1
∑
n
t
p
=
∫
1
0
x
b
d
x
⇒
∫
1
0
[
x
p
+
1
p
+
]
⇒
x
p
+
p
+
1
|
1
0
⇒
1
p
+
1
so option (b) is correct
Suggest Corrections
0
Similar questions
Q.
lim
n
→
∞
1
p
+
2
p
+
3
p
+
.
.
.
.
.
.
+
n
p
n
p
+
1
is equal to (p
≠
-1)
Q.
lim
n
→
∞
1
p
+
2
p
+
.
.
.
+
n
p
n
p
+
1
is
Q.
lim
n
→
∞
1
p
+
2
p
+
3
p
+
.
.
.
+
n
p
n
p
+
1
is
Q.
l
i
m
π
→
∞
1
ρ
+
2
ρ
+
3
ρ
+
⋯
+
n
ρ
n
ρ
+
1
=
[AIEEE 2002]