The value of limx→0(1−cosx)+2sinx−sin3x−x2+3x4tan3x−6sin2x+x−5x3 is
2
limx→0(1−cosx)+2sinx−sin3x−x2+3x4tan3x−6sin2x+x−5x3
Dividing N' and D' by x :
=limx→02sin2x2x+2sinxx−sin2xx−x+3x3tan3xx−6sin2x+1−5x2
=limx→02x4sin2x2x24+2sinxx−x2sin3xx3−x+3x3x3(tan3xx3)−6sin2xx2+1−5x2
=0+2−0−0+00−0+1−0=2