The value of nC0 - nC2 + nC4 - nC6 . . . . .
Consider the expansion of (1+x)n.
(1+x)n = nC0 + nC1x + nC2 x2 + nC3x3 + nC4x4...............
Put x = i,
⇒ (1+i)n = nC0 + nC1i - nC2 - nC3 i + nC4...................
(1 + i) = √2 eiπ4
⇒(1+i)n = 2n2einπ4 = 2n2(icosnπ4+isinnπ4)
⇒(1+i)n = 2n2(cosnπ4+isinnπ4)
= n(nC0 - nC2 + nC4...............) + i(nC1 - nC3 + nC5...................)
Equating the real parts, we get
(nC0 - nC2 + nC4.....................) = 2n2cosnπ4