The correct option is C π324
I=π/2∫−π/2x21+tanx+√1+tan2xdx
Using the property,
b∫a f(x) dx=b∫a f(a+b−x) dx
I=π/2∫−π/2x21−tanx+√1+tan2xdxOn adding these two integrals we get, 2I=π/2∫−π/2x2(2+2√1+tan2x)(1+√1+tan2x)2−tan2xdx2I=π/2∫−π/2x2dx=[x33]π/2−π/22I=13×2π38⇒I=π324