The value of ∏6k=1(sin2πk7−icos2πk7) is:
-1
Given expression ∏6k=1(−i)(cos2πk7+isin2πk7)
(−i)6(cos2πk7+isin2πk7) × (cos4π7+isin4π7).....6terms
= -[cos(2π7+4π7+.......6terms)+isin(2π7+4π7+.......6terms)]
= −[cos(42π7)+isin(42π7)]
= -(cos6π+isin6π)=−1