The correct option is B √72
Let A=2π7
⇒7A=2π
sin4A=sin(7A−3A)=sin(2π−3A)
⇒sin4A=−sin3A
⇒2sin2Acos2A=4sin3A−3sinA
⇒4sinAcosA(1−2sin2A)=sinA(4sin2A−3)
⇒4cosA(1−2sin2A)=4sin2A−3
Square both the sides, we get
16(1−sin2A)(1−2sin2A)2=(4sin2A−3)2
=64sin6A−112sin4A+56sin2A−7=0
It is cubic in sin2A with roots:
sin2(2π7), sin2(4π7), sin2(8π7)
Sum of roots, sin2(2π7)+sin2(4π7)+sin2(8π7)=74
Also, from trigonometric identities, we can prove that:
sin(2π7)sin(4π7)+sin(4π7)sin(8π7)+sin(8π7)sin(2π7)=0
⇒(sin(2π7)+sin(4π7)+sin(8π7))2=74
⇒sin(2π7)+sin(4π7)+sin(8π7)=√72