The correct option is D secA+tanA if A∈(3π2,2π]
√1+sinA1−sinA=√(1+sinA)21−sin2A =|1+sinA||cosA|
=1+sinA|cosA| (∵1+sinA∈[0,2])
|cosA|=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩+cosA,A∈[0,π2)∪[3π2,2π]−cosA,A∈(π2,3π2)
If A∈[0,π2)∪(3π2,2π] as at A=3π2, cosA=0
√1+sinA1−sinA=1+sinAcosA=secA+tanA
If A∈(π2,3π2)
√1+sinA1−sinA=1+sinA−cosA=−(secA+tanA)