Question 6
The value of (tan1∘,tan2∘,tan3∘……tan89∘) is
(A) 0
(B) 1
(C) 2
(D) 12
The answer is (B).
Thinking Process
Use the transformation tan(90∘−θ)=cotθ from greater than trigonometric angle tan45∘ after that we use the trigonometric ratio, cotθ=1tanθ
tan1∘,tan2∘,tan3∘……tan89∘
=tan1∘,tan2∘,tan3∘……tan44∘,tan45∘,tan46∘……tan87∘,tan88∘,tan89∘
=tan1∘,tan2∘,tan3∘……tan44∘,(1).tan(90∘−44∘)……tan(90∘−3∘)tan(90∘−2∘).tan(90∘−1∘) (∵tan45∘=1)
=tan1∘,tan2∘,tan3∘……tan44∘,(1).cot44∘……cot3∘.cot2∘,cot1∘
⌊∵tan(90−θ)=cotθ⌋
∵tan45∘=1
=tan1∘,tan2∘,tan3∘……tan44∘,(1)…1tan44∘…1tan30∘…1tan1∘[∵cotθ=1tanθ]