The correct option is B 0
a=tan20+2tan50−tan70=tan20+tan50+tan50−tan70
⇒a=sin20cos50+cos20sin50cos20cos50+sin50cos70−cos50sin70cos70cos50
⇒a=sin(20+50)cos(90−70)cos50+sin(50−70)cos(90−20)cos50 {∵sinAcosB+cosAsinB=sin(A+B)&sinAcosB−cosAsinB=sin(A−B)}
⇒a=sin70sin70cos50−sin20sin20cos50=0
Ans: B