The value of tansin-135+cos-1313 is
617
613
135
176
The explanation for the correct option
The given trigonometric expression: tansin-135+cos-1313.
Let us assume that sin-135=y
⇒siny=35⇒cosy=1-352∵sin2θ+cos2θ=1⇒cosy=1-925⇒cosy=25-925⇒cosy=1625⇒cosy=45
Thus, tany=sinycosy
⇒tany=3545⇒tany=34⇒y=tan-134⇒sin-135=tan-134
Let us assume that cos-1313=z
⇒cosz=313⇒sinz=1-3132∵sin2θ+cos2θ=1⇒sinz=1-913⇒sinz=13-913⇒sinz=413⇒sinz=213
⇒tanz=213313⇒tanz=23⇒z=tan-123⇒cos-1313=tan-123
Therefore, tansin-135+cos-1313=tantan-134+tan-123
It is known that tan-1(A)+tan-1(B)=tan-1(A+B1-AB).
⇒tansin-135+cos-1313=tantan-134+231-3423⇒tansin-135+cos-1313=3×3+2×4121-12⇒tansin-135+cos-1313=9+81212⇒tansin-135+cos-1313=1712×2⇒tansin-135+cos-1313=176
Hence, option D is correct.