The value of tanπ5+2tan2π5+4cot4π5 is
cotπ5
cot2π5
cot4π5
cot3π5
Explanation for the correct option
The given trigonometric expression: tanπ5+2tan2π5+4cot4π5.
tanπ5+2tan2π5+4cot4π5=tanπ5+2tan2π5+4cot2×2π5⇒tanπ5+2tan2π5+4cot4π5=tanπ5+2tan2π5+4tan2×2π5∵cotθ=1tanθ⇒tanπ5+2tan2π5+4cot4π5=tanπ5+2tan2π5+42tan2π51-tan22π5∵tan2θ=2tanθ1-tan2θ⇒tanπ5+2tan2π5+4cot4π5=tanπ5+2tan2π5+2-2tan22π5tan2π5⇒tanπ5+2tan2π5+4cot4π5=tanπ5+2tan22π5+2-2tan22π5tan2×π5⇒tanπ5+2tan2π5+4cot4π5=tanπ5+2tan2×π5⇒tanπ5+2tan2π5+4cot4π5=tanπ5+22tanπ51-tan2π5⇒tanπ5+2tan2π5+4cot4π5=tanπ5+1-tan2π5tanπ5⇒tanπ5+2tan2π5+4cot4π5=tan2π5+1-tan2π5tanπ5⇒tanπ5+2tan2π5+4cot4π5=1tanπ5⇒tanπ5+2tan2π5+4cot4π5=cotπ5
Hence, option A is correct .