The value of the definite integral ∫1−1dx(1+ex)(1+x2) is
π4
I=∫1−1dx(1+ex)(1+x2) ....(i)
Put x=−t⇒dx=−dt
∴I=∫−11dt(1+e−t)(1+t2)
⇒I=∫1−1(et)dt(1+et)(1+t2)
⇒I=∫1−1(ex)dx(1+ex)(1+x2) ...(ii)
Adding (i) and (ii)
2I=∫1−1dx1+x2=2∫10dx1+x2
⇒I=[tan−1x]10=π4