The correct option is A (x−1)n−1(x+n−1)
∣∣
∣
∣
∣∣x11...1x1...11x...............∣∣
∣
∣
∣∣
Using C1→C1+C2+C3+… in the above matrix, it reduces to,
∣∣
∣
∣
∣∣x+n−111...x+n−1x1...x+n−11x...............∣∣
∣
∣
∣∣
Take x+n−1 out of the determinant,
(x+n−1)∗∣∣
∣
∣
∣∣111...1x1...11x...............∣∣
∣
∣
∣∣
Now apply, Ra→Ra−Ra−1 where a≥2
(x+n−1)∗∣∣
∣
∣
∣∣111...0x−10...00x−1...............∣∣
∣
∣
∣∣, which results in (x+n−1)(x−1)n−1
Hence, Option A.