wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the determinant sin Acos Asin A+cos Bsin Bcos Asin B+cos Bsin Ccos Asin C+cos B is ________________.

Open in App
Solution

Let ∆ = sinAcosAsinA+cosBsinBcosAsinB+cosBsinCcosAsinC+cosB


=sinAcosAsinA+cosBsinBcosAsinB+cosBsinCcosAsinC+cosB =sinAcosAsinAsinBcosAsinBsinCcosAsinC+sinAcosAcosBsinBcosAcosBsinCcosAcosB =0+sinAcosAcosBsinBcosAcosBsinCcosAcosB if any two columns are identical then the value of determinant is zero =sinAcosAcosBsinBcosAcosBsinCcosAcosBTaking out cosA and cosB common from C2 and C3, respectively =cosAcosBsinA11sinB11sinC11 =cosAcosB0 if any two columns are identical then the value of determinant is zero =0

Hence, the value of the determinant sinAcosAsinA+cosBsinBcosAsinB+cosBsinCcosAsinC+cosB is 0.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating One Function wrt Other
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon