The correct option is B π4
We have,
Let I=∫∞0 x dx(1+x)(1+x2)Let x=tan θ⇒dx=sec2 θ dθWhen x=∞,θ=π2 and x=0,θ=0 I=∫π/20 tan θ sec2 θ (1+tan θ)(1+tan2 θ)dθ⇒I=∫π/20 sin θcos θ sec2 θ (1+sin θcos θ)sec2 θdθ⇒I=∫π/20 sin θsin θ+cos θdθ ....(1]⇒I=∫π/20 sin (π2−θ)sin (π2−θ)+cos (π2−θ)dθ⇒I=∫π/20 cos θsin θ+cos θdθ ....(2]Adding (1] and (2], we get⇒2 I=∫π/20 sin θ+cos θsin θ+cos θdθ⇒2 I=∫π/20 1⋅dθ⇒2 I=(x]π/20=π2−0⇒I=π4