wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral π0log(1+cosx)dx is ?

A
π2log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
πlog2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
πlog2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B πlog2
Given,

π0log(1+cosx)dx

Let I=π0log(1+cosx)dx .... (1)

I=π0log(1+cos(πx))dx

=π0log(1cosx)dx....(2)

adding (1) and (2)

2I=π0log(1+cosx)dx+π0log(1cosx)dx

2I=π0log(1cos2x)dx

2I=π02logsinxdx

I=π0logsinxdx ......... (3)
I=2π20log(sinx)dx ......(4)
I=2π20log(cosx)dx ........(5)
adding (4) and (5)
2I=2π20log(sinxcosx)dx
I=π20log(2sinxcosx2)dx
I=π20logsin(2x)dxπ20log2dx
put 2x=t
I=π0logsintdt2π2log2
I=12π0logsinxdxπ2log2
using (3)
I=12Iπ2log2
I=π0log(1+cosx)dx=π0logsinxdx=πlog2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon