wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the integral π203cosθ(cosθ+sinθ)5dθ equals

Open in App
Solution

I=π203(cosθ)(cosθ+sinθ)5dθ ...(i)
I=π203(sinθ)(cosθ+sinθ)5dθ ...(ii)
2I=π203(cosθ+sinθ)4dθ
2I=π203sec2θ(1+tanθ)4dθ
Let 1+tanθ=ttanθ=(t1)2sec2θ dθ=2(t1) dt

2I=13×2(t1)(t)4dt
I=31(t3t4)dt
I=3[t22t33]1=3[(00)(12+13)]I=12=0.5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon