The correct option is C limx→0(cos2x)log(√2−x)x2cos2x
limx→∞(√x2+x−x)=limx→∞x(√x2+x+x)=limx→∞1(√1+1x+1)=12
limx→∞√x2+x+1−√x2+1=limx→∞x√x2+x+1+√x2+1=limx→∞xx√1+1x+1x2+x√1+1x2=12
limx→∞xx+√x2−2x
=limx→∞xx+x √1−2x=limx→∞11+√1−2x=12
limx→0(cos2x)log(√2−x)x2cos2x=elimx→0log(√2−x)x2cos2x(−2sin2x)=e(−2)log(√2)=(√2)−2=12
limx→−1(x+14)tan(−π2x)=limx→−1(t4)tan(−π2(t−1))
By replacing x+1=t such that x→−1⇒t→0 So, we have
14limt→0π2(t)tanπ2(t)2π=14⋅2π=12π