L=limx→1−(cos−1x)21−√x→ln00 form.
Apply L’Hospital’s Rule
L=limx→12cos−1x(−1√1−x2)0−12x12L=limx→14cos−1(x).(x12)√1−x2Letx=cosθwhenx=5,θ→0√1−x2=sinθ∴L=limθ→04cos−1(cosθ)(cosθ)12sinθ∴L=4limx→1θ√cosθsinθ
Divide N and D by θ,
L=limθ→0√cosθlimθ→0sinθθ∴L=4×11∴L=4.