The correct option is A cos4mπn(n+1)+isin4mπn(n+1),m=1,2,...
log(z)+log(z2)+...log(zn)=0
Let z=eiθ
Hence
log(z)+2log(z)+3log(z)...+nlog(z)=0
log(z)(1+2+3+...+n)=0
log(z)(n(n+1)2)=0
log(z)(n(n+1)2)=0
log(zn(n+1)2)=log(1)
zn(n+1)2=1
eiθn(n+1)2=e2imπ
θn(n+1)2=2mπ
θ=4mπn(n+1)
z=eiθ
=ei4mπn(n+1)
=cos(4mπn(n+1))+isin(4mπn(n+1))