The correct option is A 227−π
Let I=∫10x4(1−x)41+x2dx
=∫10(x4−1)(1−x)4+(1−x)4(1+x2)dx
=∫10(x2−1)(1−x)4dx+∫10(1+x2−2x)2(1+x2)dx
=∫10{(x2−1)(1−x)4+(1+x2)−4x+4x2(1+x2)}dx
=∫10((x2−1)(1−x)4+(1+x2)−4x+441−x2)dx
=∫10(x6−4x5+5x4−4x2+4−41+x2)dx
=[x77−4x66+5x55−4x33+4x−4tan−1x]10
=17−46+55−43+4−4(π4−0)=227−π