The value(s) of m for which the line y=mx lies wholly outside the circle x2+y2−2x−4y+1=0, is(are)
Given circle x2+y2−2x−4y+1=0, line y=mx
x2+y2−2x−4y+1=0
⇒x2−2x+1+y2−4y+4−4=0
⇒(x−1)2+(y−2)2−4=0
For y = mx to lie completely outside (x−1)2+(y–2)2=22 then the equation (x−1)2+(mx−2)2–4=0 must have imaginary roots
⟹Δ<0
⟹(m2+1)x2–x(2+4m)+1=0
b2–4ac<0
⟹(2+4m)2–4(m2+1)(1)<0
⟹16m2+4+16m−4m2−4<0
⟹4(3m2+4m)+0<0
⟹3m2+4m<0
⟹m(3m+4)<0
⟹m(m+43)<0
⟹−43<m<0
⟹m∈(−43,0)