1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Quadratic Equation
The values of...
Question
The values of
a
for which
x
3
−
6
x
2
+
11
x
−
6
x
3
+
x
2
−
10
x
+
8
+
a
30
=
0
does not have a real solution is
A
−
10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−
30
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are
A
5
B
−
30
D
12
x
3
−
6
x
2
+
11
x
−
6
x
3
+
x
2
−
10
x
+
8
=
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
(
x
−
1
)
(
x
−
2
)
(
x
+
4
)
∴
x
≠
1
,
2
,
−
4
, then
f
(
x
)
=
x
−
3
x
+
4
Range of
f
(
x
)
=
R
−
{
1
,
−
2
5
,
−
1
6
}
So, equation does not have a solution if
a
30
=
{
−
1
,
2
5
,
1
6
}
⇒
a
=
{
−
30
,
12
,
5
}
.
Suggest Corrections
0
Similar questions
Q.
The expansion of
(
x
+
1
)
(
x
+
2
)
(
x
+
3
)
is :
Q.
Solve
x
2
+
4
x
+
3
x
3
−
6
x
2
+
11
x
−
6
>
0
Q.
If
x
1
,
x
2
,
x
3
are the roots of
x
3
−
6
x
2
+
11
x
−
6
=
0
then
cot
−
1
(
x
1
)
+
cot
−
1
(
x
2
)
+
cot
−
1
(
x
3
)
is equal to
Q.
Divide
x
3
−
6
x
2
+
11
x
−
6
by
x
2
+
x
+
1
Q.
f(x) = x
3
− 6x
2
+ 11x − 6, g(x) = x
2
− 3x + 2