The values of x which satisfy the inequation 21cos2x√y2−y+12≤1 is
21cos2x√y2−y+12≤1 .....(1)
21cos2x√(y−12)2+(12)2≤1
Minimum value of 21cos2x=2<\br> Minimum value of √(y−12)2+(12)2=12
⇒ minimum value of (1) is 1
⇒ (1) is possible when
21cos2x√(y−12)2+(12)2=1
⇒cos2x=1 and y=12
y=12,x=2nπ