The correct option is C ¯¯¯r.(9^i+3^j−^k)=14
The plane passes through three given points
Let A(^i+^j−2^k),B(2^i−^j−^k),C(^i+2^j+^k)
then ¯¯¯¯¯¯¯¯AB=P.V of B−P.V of A=^i−2^j+3^k
and ¯¯¯¯¯¯¯¯BC=P.V of C−P.V of B=−^i+3^j+0^k
Now any vector normal to the plane containing the points
A,B,C is ¯¯¯n=¯¯¯¯¯¯¯¯ABׯ¯¯¯¯¯¯¯BC=∣∣
∣∣ijk1−23−130∣∣
∣∣=−9^i−3^j+^k
∴(¯¯¯r−¯¯¯a)⋅¯¯¯n=0
⇒¯¯¯r⋅¯¯¯n=¯¯¯a⋅¯¯¯n
⇒¯¯¯r⋅(−9^i−3^j+^k)=(^i+^j−2^k)⋅(−9^i−3^j+^k)
⇒¯¯¯r⋅(9^i+3^j−^k)=14
Hence choice (c) is the correct one.