Let x^i+y^j+z^k be the unit vectors Along vector c.
since −^i+^j+^k bisects the angle between vector
c & 3^i+4^j
therefore (−^i+^j−^k)=(x^i+y hatj+z^k)+3^i+4^j5
x+35=−λ
y+45=−λ [ on comparing the co. effo of ^i,^j,^k]
z=−λ
Now, x2+y2+z2=1[ ∵x^i+y^j+z^k is a unit vector]
Or (−λ−35)2+(λ−45)2+λ2=1 putting value of x, y, z.
or 3λ225λ=0
λ=0 & λ=215 [ but λ≠0^ifλ=0 it implies that the given vector are parall]
now x+35=−215⇒x=−215−35
x=−2−915=−1115
y+45=−215
⇒y=−215−45=−2−1215=−1415
z=−215
Hence x^i+y^j+z^k=−115(11^i+10^j+2^k)