The correct option is B 3ˆi−j+2ˆk
Since dipole moment is a vector quantity, to find the net dipole moment of the arrangement are can add these using vector algebra.
Given −→P1=ˆi+2ˆj+ˆk and −→P2=2ˆi−3ˆj+ˆk
So net →p=−→P1+−→P2=(ˆi+2ˆj+ˆk)+(2ˆi−3ˆj+ˆk)
=3ˆi−j+2ˆk