The correct option is D ^k−12^j
Equation of lines L1:→r=λ^i⇒x−0λ=y−00=z−00
L2:→r=^k+μ^j⇒x−00=y−0μ=z−10
L3:→r=^i+^j+ν^k⇒x−10=y−10=z−0ν
Let P(λ,0,0), Q(0,μ,1), R(1,1,ν) be points on L1,L2,L3 respectively.
∵P,Q,R are collinear, −−→PQ is collinear with −−→QR
∴−−→PQ∥−−→QR
⇒−−→PQ=k −−→QR
Hence, −λ1=μ1−μ=1ν−1=k
⇒λ=−k, μ=kk+1 and ν=k+1k
∴μ=−λ1−λ=1ν
⇒μ≠0,1
For every μ∈R–{0,1} there exist unique λ,ν∈R,
For μ=0 and μ=1, we get the points ^k and ^k+^j respectively.
Hence, Q≠^k and Q≠^k+^j