For the crown glass, we have:
Refractive index for red rays = μr
Refractive index for yellow rays = μy
Refractive index for violet rays = μv
For the flint glass, we have:
Refractive index for red rays = μ'r
Refractive index for yellow rays = μ'y
Refractive index for violet rays = μ'v
Let δcy and δfy be the angles of deviation produced by the crown and flint prisms for the yellow light.
Total deviation produced by the prism combination for yellow rays:
δy = δcy − δfy
= 2δcy − δfy
=2(μcy + 1)A − (μfy − 1)A'
Angular dispersion produced by the combination is given by
δv − δr = [(μvc − 1)A − (μvf − 1)A' + (μvc − 1)A −
Here,
μvc = Refractive index for the violet colour of the crown glass
μvf = Refractive index for the violet colour of the flint glass
= Refractive index for the red colour of the crown glass
= Refractive index for the red colour of the flint glass
On solving, we get:
δv − δr = 2(μvc −1)A − (μvf − 1)A'
(a) For zero angular dispersion, we have:
δt − δt = 0 = 2(μvc −1)A − (μvf − 1)A'
(b) For zero deviation in the yellow ray, δy = 0.
⇒ 2(μcy − 1)A = (μfy − 1)A