Total number of values of x, satisfying (√3+1)2x+(√3−1)2x=23x , is equal to :
1
(√3+1)2x+(√3−1)2x=23x=(2√2)2x
⇒ (√3+12√2)2x+(√3+12√2)2x=1
⇒ (2+√34)x+(2−√34)x=1
⇒ x = 1 is a solution.
Also 0 <2+√34< 1
,0 < 2−√34< 1 ∴ if x > 1,(2+√34)x<2+√34,(2−√34)x<2−√34
⇒ (2+√34)x+(2−√34)x<1.
∴ if x < 1 , (2+√34)x+(2−√34)x>1. Hence x = 1 is the only solution