(3x+4y)2=x+4y−7
Introducing the variable λ
(3x+4y+λ)2=x+4y+8λy+6λx+λ2−7(3x+4y+λ)2=(1+6λ)x+(4+8λ)y+λ2−73x+4y+λ=0......(i)(1+6λ)x+(4+8λ)y+λ2−7=0......(ii)
For λ we assume both the lines are perpendicular
Let slope of (i) be m and (ii) be m′
m=−34m′=−1+6λ4+8λmm′=−1−34×−1+6λ4+8λ=−13+18λ=−16−32λ⇒λ=−1950(3x+4y+λ)2=(1+6λ)x+(4+8λ)y+λ2−7(3x+4y−1950)2=(1+6×−1950)x+(4+8×−1950)+(−1950)2−7(3x+4y−1950)2=−3225x+2425y−171392500(3x+4y−1950)2=−825(4x−3y+17139800)⎛⎜ ⎜ ⎜⎝3x+4y−19505⎞⎟ ⎟ ⎟⎠2=−8125⎛⎜ ⎜ ⎜⎝4x−3y+171398005⎞⎟ ⎟ ⎟⎠Y=3x+4y−1950,X=4x−3y+171398005Y2=−8125X
Comparing with the standard equation of parabola
4a=−8125⇒a=−2125